A project of the GIGA-Neurosciences awarded by the King Baudouin Foundation

A project of the GIGA-Neurosciences awarded by the King Baudouin Foundation

Retinal degeneration diseases, characterized by progressive loss of retinal cells, affect several million of persons worldwide and result in a progressive loss of visual abilities.

Currently, there is no effective treatment available for patients suffering from these conditions.

Recently, attention has been given to cell replacement therapy using retinal cells derived from induced Pluripotent Stem (iPS) cells. The first clinical trials are ongoing using stem cell-derived retinal epithelial cells in patients suffering from Age Related Macular Degeneration disease (AMD).

Transplantation of stem cell derived retinal cells offers great promise for the treatment of patient suffering from various retinal degeneration diseases. However, the treatment of pathologies of the neuro-retina remains more challenging as grafted cells need to establish neuronal connections with each other and the patient’s retina after implantation. Very little is known about the mechanisms that drive the formation of functional synaptic connections in the retina and the neuron circuit formation by transplanted neurons which is presently a major bottleneck in making iPS-derived neuro-retinal cells (including photoreceptor cells) useful in the clinic.

In this regard, this project aims to study and ultimately manipulate the process of synaptogenesis in a special in vitro system (embryoïd body (EB) based 3D retinal cultures) derived from mouse iPS-cells as a means towards enhancing functional recovery upon transplantation. This 3D culture system best recapitulates the normal development of the embryotic retinal tissue and offers the possibility to generate all retinal cell lineages in their properly layered configuration, hence recreating several structural features of the native retina. Using the most up-to-date single cell technologies and CRISPR/CAS9 methodology, this project will shed light on the fundamental mechanisms underlying synaptogenesis in the retina, which may lead to novel intervention strategies to foster functional recovery in patients.

Related articles

PDC*line Pharma is GMP accredited by the Belgian Federal Agency for Medicines and Health Products (FAMHP) for its Quality Control and Release Activities for PDC*lung, a drug for lung cancer immunotherapy

Liège (Belgium), 21st January 2019. PDC*line Pharma is delighted to announce, that the company is now accredited by the Belgian Federal Agency for Medicines and Health Products (FAMHP) for the Quality Control and Release activities of its anticancer agent PDC*lung, intended for the treatment of patients with lung cancer.  PDC*line Pharma is developing a new

Read more
PDC*line Pharma is GMP accredited by the Belgian Federal Agency for Medicines and Health Products (FAMHP) for its Quality Control and Release Activities for PDC*lung, a drug for lung cancer immunotherapy

First Congress in Health Simulation

The Medical Simulation Center of the University of Liège organizes its first congress in Health Simulation: “Towards evidence-based simulation”. Event will be held on Thursday, March 28th, 2019 in the faculty of medicine amphitheatres of Liège University, located on Sart-Tilman campus. Several themes will be discussed: Evidence-based Innovations and advances in simulation Medical education –

Read more
First Congress in Health Simulation

New University Certificate for clinical trials

The Clinical Sciences Department of the Medicine Faculty of the University of Liège organizes from the academic year 2018-2019 a University Certificate in clinical trials. More information is available in this folder

Read more
New University Certificate for clinical trials