Effects of microgravity simulation on zebrafish transcriptomes and bone physiology

Effects of microgravity simulation on zebrafish transcriptomes and bone physiology

Physiological modifications in near weightlessness, as experienced by astronauts during space flight, have been the subject of numerous studies. Various animal models have been used on space missions or in microgravity simulation on ground to understand the effects of gravity on living animals. Here, we used the zebrafish larvae as a model to study the effect of microgravity simulation on bone formation and whole genome gene expression. To simulate microgravity (sim-μg), we used two-dimensional (2D) clinorotation starting at 5 days post fertilization to assess skeletal formation after 5 days of treatment. To assess early, regulatory effects on gene expression, a single day clinorotation was performed. Clinorotation for 5 days caused a significant decrease of bone formation, as shown by staining for cartilage and bone structures. This effect was not due to stress, as assessed by measuring cortisol levels in treated larvae. Gene expression results indicate that 1-day simulated microgravity affected musculoskeletal, cardiovascular, and nuclear receptor systems. With free-swimming model organisms such as zebrafish larvae, the 2D clinorotation setup appears to be a very appropriate approach to sim-μg. We provide evidence for alterations in bone formation and other important biological functions; in addition several affected genes and pathways involved in bone, muscle or cardiovascular development are identified.

References :

Effects of microgravity simulation on zebrafish transcriptomes and bone physiology—exposure starting at 5 days post fertilization

Jessica Aceto, Rasoul Nourizadeh-Lillabadi, Silvia Bradamante, Jeanette A Maier, Peter Alestrom, Jack JWA van Loon & Marc Muller

Article number: 16010 (2016) doi:10.1038/npjmgrav.2016.10

Aceto J, Nourizadeh-Lillabadi R, Maree R, Dardenne N, Jeanray N, Wehenkel L, Alestrom P, van Loon JJ, Muller M (2015). Zebrafish bone and general physiology are differently affected by hormones or changes in gravity. PLoS One 10,e0126928.

Related articles

PDC*line Pharma is GMP accredited by the Belgian Federal Agency for Medicines and Health Products (FAMHP) for its Quality Control and Release Activities for PDC*lung, a drug for lung cancer immunotherapy

Liège (Belgium), 21st January 2019. PDC*line Pharma is delighted to announce, that the company is now accredited by the Belgian Federal Agency for Medicines and Health Products (FAMHP) for the Quality Control and Release activities of its anticancer agent PDC*lung, intended for the treatment of patients with lung cancer.  PDC*line Pharma is developing a new

Read more
PDC*line Pharma is GMP accredited by the Belgian Federal Agency for Medicines and Health Products (FAMHP) for its Quality Control and Release Activities for PDC*lung, a drug for lung cancer immunotherapy

First Congress in Health Simulation

The Medical Simulation Center of the University of Liège organizes its first congress in Health Simulation: “Towards evidence-based simulation”. Event will be held on Thursday, March 28th, 2019 in the faculty of medicine amphitheatres of Liège University, located on Sart-Tilman campus. Several themes will be discussed: Evidence-based Innovations and advances in simulation Medical education –

Read more
First Congress in Health Simulation

New University Certificate for clinical trials

The Clinical Sciences Department of the Medicine Faculty of the University of Liège organizes from the academic year 2018-2019 a University Certificate in clinical trials. More information is available in this folder

Read more
New University Certificate for clinical trials