Computational models for tissue engineering

One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. In order to tackle these issues, researchers at GIGA are developping computational models that can help in:

  • Quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population
  • Quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product
  • Assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth

Interested in these projects? Drop us an email [info@b2h.be]. We are looking forward collaborating with you!

Related articles

New University Certificate for clinical trials

The Clinical Sciences Department of the Medicine Faculty of the University of Liège organizes from the academic year 2018-2019 a University Certificate in clinical trials. More information is available in this folder

Read more
New University Certificate for clinical trials

A new gene responsible for juvenile myoclonic epilepsy?

In collaboration with a team at the University of California at Los Angeles (UCLA), researchers from GIGA-Neurosciences have discovered a new gene responsible for a seizure syndrome called juvenile myoclonic epilepsy (JME). This discovery was made as part of an international consortium that studies genetic abnormalities responsible for epileptic diseases. It is being published this week in

Read more
A new gene responsible for juvenile myoclonic epilepsy?

New technologies available at the GIGA Imaging platform

The LIGHTSHEET MICROSCOPY can deliver optical sections, 3D reconstructions and timelapse movies of whole sample volumes at subcellular resolutions. The fast scan speeds and low phototoxicity of the lightsheet allow to record the development of fluorescent transgenic animals over long time periods, such as zebrafish embryos. Alternatively 3D reconstructions of fixed whole organs or whole embryos,

Read more
New technologies available at the GIGA Imaging platform

We use cookies to give you the best online experience. By agreeing you accept the use of cookies in accordance with our cookie policy.

Privacy Settings saved!
Privacy Settings

When you visit any web site, it may store or retrieve information on your browser, mostly in the form of cookies. Control your personal Cookie Services here.


We track anonymized user information to improve our website.
  • _ga 2 year
  • _gid 24 hours
  • _gat 1 minute
  • AMP_TOKEN 30 seconds to 1 year
  • _gac_ 90 days

Decline all Services
Accept all Services